Mycotoxins, Mastitis and Milk

Hidden Health Threats of Upsizing

What’s Wrong with My Herd?
Part 2: Endotoxins
Higher Temperatures and Bigger Units

The summertime is over and, as predicted, temperatures recorded in many regions—including the US, Middle East and South Europe—were well above average. In the US alone, heat stress costs the dairy industry approximately US$1 billion each year.

Dairy cows are particularly sensitive to heat stress due to the heat generated during milk production and rumen fermentation. More heat and humidity also means that feed and silage may contain higher amounts of harmful mycotoxins. In this issue of Science & Solutions we explore how mycotoxins can aggravate mastitis.

Diets lower in neutral detergent fiber (NDF) can be used to limit rumen fermentation heat—though the resulting rumen pH drop may make cows more susceptible to endotoxins. We detail tips against endotoxins on page 9.

Finally, mycotoxins and endotoxins are just two of the issues that farms encounter during upsizing. The global trend of more cows per herd comes with hidden health threats that jeopardize the economics benefits. On page 6 we look at common difficulties and offer tips to minimize disease during expansion. We hope that this information helps you to maintain healthy, high performing and profitable herds.

Enjoy the reading.

Zanetta CHODOROWSKA
Ruminant Technical Manager
Contents

Mycotoxins, Mastitis and Milk
The links between mycotoxins and mastitis, and the effects on the quality and production of milk.
By Paige Gott, PhD

Hidden Health Threats of Upsizing
Enhanced management and prevention efforts are required to achieve greater efficiency.
By Zanetta Chodorowska, Master Engineer

What’s Wrong with My Herd?
Part 2: Endotoxins
A handy diagnostic checklist of symptoms, causes and remedies.
Mycotoxins, Mastitis and Milk

By Paige Gott, Ruminant Technical Manager

Mastitis is hard on cows and a major cost for dairying. Here we explore the links between mycotoxins and mastitis, and the effects on the quality and production of milk.

Mastitis is one of the most costly diseases of dairy cows globally. The estimated annual cost to the US dairy industry alone is $2 billion. While the causes and management of mastitis are complex, mycotoxins should be considered as they increase the risk of mastitis and can have negative impacts on milk production and milk quality.

The Types of Mastitis

Mastitis is an inflammation of the mammary gland which is generally associated with intramammary infection by microorganisms. Bacteria are the most common microorganism involved, but other agents can include fungal species (yeasts or molds), certain microscopic algae and viruses. Physical trauma or chemical irritation can occasionally cause mastitis.

There are multiple ways to classify cases of mastitis. The first major classification has to do with the origin of the pathogen: contagious vs. environmental (Table 1). Contagious pathogens include Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma spp. Common environmental pathogens include Escherichia coli, Klebsiella spp., and environmental streptococci such as S. uberis and S. dysgalactiae. There are many other microorganisms that have been isolated from cases of mastitis. Coagulase negative staphylococci (CNS) are normal flora on the skin of the cows and these organisms can act as opportunistic pathogens when they enter the mammary gland. A hot topic in the world of mastitis research revolves around differentiating CNS to better understand the differences in their effects on milk quality and yield.

The distinction of acute vs. chronic mastitis has to do with the timing and duration of the disease (Table 2). Clinical and subclinical mastitis deal with the presentation of the disease. Clinical cases are easy to identify due to the visible changes in the milk and potentially the mammary gland. Subclinical cases often go unrecognized without monitoring of somatic cell count (SCC) or bacteriological culturing of milk. The different mastitis classifications are not mutually exclusive. For instance, a cow could have an acute clinical case of environmental mastitis.

Mastitis Costs

Economic losses stem from reduced milk production and decreased milk quality. Farmers must discard milk from cows with clinical cases of mastitis and from cows undergoing antibiotic treatment (according to withdrawal periods which provide time for antibiotics to clear the cow’s body). Mastitis also alters the composition and properties of milk which reduces cheese yield and can reduce shelf life of manufactured products. Treatment costs and veterinary costs rise, as do labor costs, and milking parlor efficiency can decrease due to increased time spent attending to mastitic animals.
Mycotoxins increase the risk of mastitis and can have negative impacts on milk production and milk quality.

addition to economic losses, animal welfare is a concern as studies have shown that mastitis can be painful and cause discomfort to cows.

Thus cows diagnosed with clinical mastitis, or those with persistent subclinical mastitis have a greater risk of being culled. Indeed, udder health issues are frequently cited as one of the top three reasons for culling of dairy cows. Low milk production, potentially associated with mastitis, is another leading cause of culling in dairy herds. Toxic mastitis, an acute form of the disease resulting in severe inflammation and septicemia, can even lead to cow death.

Predisposing factors

Table 3 outlines predisposing factors of mastitis. Proper milking parlor management and milking routine are essential to limiting mastitis risk in a herd. The milking system must be well maintained to ensure properly functioning, clean equipment is used to harvest milk. The pressure of the milking system and the duration of milking must be optimized as over-milking can damage the teat end, increasing the likelihood of mastitis.

Insufficient milk removal can also predispose cows to mastitis and may decrease overall milk production.

Surfaces and alleys moving into the parlor as well as the holding pen must provide firm footing and cow flow should be smooth (a combination of good design and stress free handling) thus reducing the risk of physical injury to teats. Coordinating the delivery of fresh feed while cows are in the parlor will entice cows to eat and remain standing upon return to the pen. This provides time for the teat ends to close and limits exposure to pathogens following milking.

Good hygiene in the stall is also essential to reducing mastitis risk. Clean sand bedding is considered the gold standard, as inorganic material does not support the growth of pathogens. The greater the organic content of the sand; the less protective it will be. Nutrition can also play a role in mastitis risk. Cows in negative energy balance, especially transition cows, are more susceptible to infection. Diets must also meet vitamin and mineral requirements for proper immune function.

The environment plays a large role in mammary health. Increased temperatures and humidity better support pathogen growth in the cow’s environment as well as increase stress in the cow, reducing her resistance to infection.

Mycotoxins

Mycotoxins can suppress the immune system of animals. Cows experience a great deal of stress around parturition due to the many physiological changes which occur with calving and the onset of lactation. Mycotoxins can exacerbate this stress via immune suppression and decreased feed intake, deepening negative energy balance and increasing the risk of metabolic disorders and infectious diseases. Deoxynivalenol (DON) and other trichothecenes can disrupt protein synthesis which can reduce white blood cell populations and condition and limit production of important inflammatory mediators. In addition, some of the ergots and trichothecenes can cause dermal lesions and gangrenous necrosis that disrupt the integrity of the teat and the teat skin, contributing to an increased risk of mastitis.

Mastitis is an inflammation of the mammary gland generally associated with intramammary infection.
Table 3. Predisposing factors of mastitis.

<table>
<thead>
<tr>
<th>Milking equipment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teat end damage</td>
<td></td>
</tr>
<tr>
<td>Over-milking</td>
<td></td>
</tr>
<tr>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>• Resistance</td>
<td></td>
</tr>
<tr>
<td>• Mammary structure</td>
<td></td>
</tr>
<tr>
<td>• Age</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>• Milking routine including pre- and post-dip application</td>
<td></td>
</tr>
<tr>
<td>• Hygiene – milking parlor and barn</td>
<td></td>
</tr>
<tr>
<td>• Bedding</td>
<td></td>
</tr>
<tr>
<td>• Nutrition</td>
<td></td>
</tr>
<tr>
<td>• Vaccination program</td>
<td></td>
</tr>
<tr>
<td>• Dry cow therapy and transition cow management</td>
<td></td>
</tr>
<tr>
<td>• Heifer management</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Immune suppression</td>
<td></td>
</tr>
<tr>
<td>• Transition cows</td>
<td></td>
</tr>
<tr>
<td>• Mycotoxins</td>
<td></td>
</tr>
</tbody>
</table>

Source: BIOMIN

Table 4. Potential mammary-related negative effects of mycotoxins in dairy cows.

1. Reduced milk production
2. Toxic contaminants in milk, especially Aflatoxin M₁
3. Increased risk of mastitis
4. Altered milk composition

Source: BIOMIN

Table 4 highlights some of the main consequences of mycotoxins in dairy cows in relation to mammary health and milk production. Reduced milk production results from several factors, including a decrease in intake or feed refusal that is commonly reported with certain mycotoxins such as DON. Mycotoxins can alter rumen function by changing the microbial populations or the breakdown of nutrients, consequently reducing nutrient absorption and impairing metabolism which ultimately leads to reduced availability of the precursors needed for milk synthesis.

Reduced milk quality stems primarily from increased SCC. Somatic cells, specifically neutrophils, increase in number in the mammary gland during mastitis to combat invading pathogens. Mycotoxins can reduce neutrophil function, making the cow’s immune response less effective which in turn increases the severity and duration of infection. Additionally, mastitis causes alterations in the concentration of milk components including changes in fat, protein, lactose, and mineral content. Compared with milk from healthy cows, mineral changes include increased sodium and reduced potassium levels. These differences negatively impact the manufacturing quality of milk. Milk processors want to obtain the highest quality milk to improve the yield and shelf life of manufactured products such as cheese.

Potential toxic residues in milk are another concern. The mycotoxin of greatest concern is aflatoxin B₁ which has been shown to result in 1.8 to 6.2 percent carryover from the diet to aflatoxin M₁ in milk. Aflatoxins are carcinogenic and most countries set strict limits on allowable levels in milk.

Solution

Feed should be monitored for the presence of mycotoxins and an effective mycotoxin counteracting product should be incorporated into the feed. Mycofix® contains an EU authorized aflatoxin binder, the only product to have been successfully evaluated through the EU registration process for aflatoxin deactivation. For the less adsorbable mycotoxins such as DON that pose an increased risk of mastitis and other challenges, biotransformation rather than binding is the effective approach. Mycofix® has proven biotransformation activity on DON and other trichothecenes, zearalenone (ZEN), ochratoxin A and fumonisins. In addition, Mycofix® bioprotection components support the liver and immune system. Figure 5 shows how dairy cows (exposed to DON and ZEN in their feed) had a reduced incidence of mastitis when receiving Mycofix® Plus. Considerable data shows that Mycofix® can increase milk production, decrease somatic cell count, reduce toxic contaminants in milk, and help maintain or improve milk component content in the face of mycotoxin contamination.